
DesignCon 2025

ACCELERATING CHIPLET PLACEMENT AND ROUTING
OPTIMIZATION WITH MACHINE LEARNING

Haeyeon Rachel Kim1,∗ Federico Berto 1,∗ Junghyun Lee 1 Hyunjun An 1 Taein Shin 1

Chuanbo Hua 1 Jinkyoo Park 1 Youngwoo Kim 2 Joungho Kim 1

1KAIST, 2Sejong University

Track : 14. Machine Learning for Microelectronics, Signaling & System Design

Audience Level : All

KEY TAKEAWAYS (50 WORDS)

Chiplet technology improves system performance and customization while maintaining cost effi-
ciency. However, chiplet placement and routing pose significant challenges due to hard constraints
and combinatorial complexity. We formulate the problem as a constrained optimization task, pro-
pose a novel representation and benchmark, and implement reinforcement learning approaches to
optimize chiplet-based system design.

ABSTRACT/SESSION DESCRIPTION (200 WORDS)

Chiplet technology has emerged as a promising solution to address the growing demand for
improved system performance and customization while maintaining production cost efficiency.
Chiplet-based systems offer several key economic advantages over monolithic chips, including im-
proved wafer yield, mixed process technology node integration, reduced time to market, and the
ability to overcome reticle size limitations. However, the heterogeneous integration of an increas-
ing number of chiplets and their interconnections poses a significant challenge in chiplet placement
and routing. Chiplet placement is subject to various hard constraints, such as physical limitations,
signal integrity, power integrity, and thermal coupling considerations, making it a complex problem
distinct from traditional chip placement.

In this paper, we formulate the chiplet placement and routing problem as a constrained combinatorial
optimization task and propose a novel representation and benchmark for the problem. We implement
various reinforcement learning approaches using open-source libraries to train autoregressive poli-
cies, aiming to address the complex challenges associated with chiplet placement and routing. Our
work contributes to the advancement of chiplet technology and its application in various domains,
enabling the design of high-performance, cost-efficient, and customizable chiplet-based systems.

EXTENDED ABSTRACT/SESSION FOCUS (500 WORDS)

Chiplet technology has emerged as a promising solution to address the growing demand for im-
proved system performance and customization while maintaining production cost efficiency. As
Moore predicted in 1965, building large systems out of smaller, separately packaged, and intercon-
nected functions may prove more economical. Chiplet-based systems offer several key economic
advantages over monolithic chips, including improved wafer yield, mixed process technology node
integration, reduced time to market, and the ability to overcome reticle size limitations. However,
the heterogeneous integration of an increasing number of chiplets and their interconnections poses
a significant challenge in chiplet placement and routing.

The chiplet placement and routing problem is a critical challenge in the design of chiplet-based
systems. This problem involves determining the optimal placement of chiplets on an interposer and
routing the interconnections between them while minimizing the total route length and satisfying
various hard constraints. Each chiplet has a unique size and port locations, and the interconnections

∗Equal contribution

1

DesignCon 2025

between chiplets are defined by a set of netlists, which specify the connections between the ports
of two chiplets. The placement and routing of chiplets are interdependent, as the routing solution
heavily relies on the initial placement of the chiplets. Moreover, the order in which the routing is
performed significantly impacts the final solution quality.

The problem is further complicated by the fact that both the placement and routing subproblems are
subject to hard constraints, including physical constraints (e.g., no overlaps between chiplets and in-
terconnections), signal integrity specifications (e.g., maximum interconnection reach and data rate),
power integrity specifications (e.g., IR drop and simultaneous switching noise), and thermal cou-
pling considerations (e.g., the minimum spacing between chiplets). Chiplets must not overlap, and
routings cannot intersect, which inherently leads to a high failure rate in finding feasible solutions.
The feasibility of the problem and the final cost of the solution are highly dependent on the order in
which the chiplets are placed and the order in which the routing is performed. This combinatorial
nature of the problem adds an additional layer of complexity, as the search space for feasible and
optimal solutions expands exponentially with the number of chiplets and netlists.

In this paper, we formulate the chiplet placement and routing problem as a constrained combinatorial
optimization task, where chip placement is a prior action, and the routing of each netlist becomes the
following action. We propose a novel representation and benchmark for the problem and implement
various reinforcement learning approaches using open-source libraries to train auto-regressive poli-
cies. Our approach aims to address the complex challenges associated with chiplet placement and
routing, considering the various hard constraints and objectives specific to chiplet-based system de-
sign. By developing a reinforcement learning-based solution, we seek to optimize chiplet placement
and routing, enabling the design of high-performance, cost-efficient, and customizable chiplet-based
systems. This work contributes to the advancement of chiplet technology and its application in vari-
ous domains, including data centers and edge AI.

2

DesignCon 2025

CONTENTS

1 Introduction 4

2 Chiplet Placement and Routing Problem Statement 6

2.1 General MDP Formulation . 7

2.2 MDP for Chiplet Placement and Routing Problem 7

2.3 Problem Complexity . 9

3 Reinforcement Learning for Chiplet Placement 11

3.1 Autoregressive Policies . 11

3.2 Deep Reinforcement Learning . 11

3.3 Open-Source Libraries . 12

4 Further Works for the Main DesignCon Paper 12

3

DesignCon 2025

1 INTRODUCTION

The semiconductor industry has been driven by the relentless pursuit of improved performance,
guided by the principles of scaling as outlined in Moore’s law. However, as the limits of traditional
scaling are being reached, advanced packaging techniques have emerged as promising solutions to
maintain the pace of performance improvement. In recent years, the demand for even greater perfor-
mance enhancements, customization, and production cost efficiency has brought chiplet technology
to the forefront of the semiconductor industry. In 1965, Moore predicted that building large systems
out of smaller, separately packaged, and interconnected functions might prove more economical
[1]. This concept, now known as chiplet technology, offers several key economic advantages over
monolithic chips, including improved wafer yield, mixed process technology node integration, re-
duced time to market, and the ability to overcome reticle size limitations.

Figure 1: Comparison between the architectures of AMD MI250 and MI300

A recent example of a chiplet-based product is AMD’s MI300 in Fig. 1, which integrates 9 TSMC
5nm chiplets and 8 high-bandwidth memory (HBM) modules. Compared to its predecessor, the
MI250, the MI300 achieves an impressive 8× improvement in AI performance and a 5× improve-
ment in AI performance-per-watt. As a result, the chipletization of systems-on-chip (SoCs) is ex-
pected to accelerate in the near future.

Figure 2: Interposer roadmap by TSMC

According to the Fig. 2, the number of chiplets heterogeneously integrated within a GPU module
is expected to increase as the HBM count integrated within the module rises and as the size of
interposer expands, facilitated by the advancements in CoWoS technology.

4

DesignCon 2025

Figure 3: Chiplet-based 2.5D heterogeneous integration roadmap

As illustrated in Fig. 3, the chiplet-based 2.5D heterogeneous integration roadmap involves the inte-
gration of more HBMs, further chipletization of GPUs and CPUs, and an increase in interposer size.
According to this roadmap, the number of chiplets integrated and their interconnections is projected
to increase.

Figure 4: Future chiplet-based architecture with increasing number of chiplets and interconnections

The heterogeneous integration of an increasing number of chiplets and their interconnections poses a
significant challenge in chiplet placement and routing. As shown in Fig. 4, the conventional solution
only involves a few components, whereas the future solution is expected to involve more chiplets and
interconnections. The number of interconnections within a system can range from O(N) to O(N2),
where N is the number of chiplets. Considering the limited interposer size, placing chiplets and
routing their interconnections becomes a very challenging problem. Moreover, chiplet placement
ultimately determines the overall architecture. It is subject to various hard constraints, including
physical constraints (e.g., no overlaps between chiplets and interconnections), signal integrity spec-
ifications (e.g., maximum interconnection reach and data rate), power integrity specifications (e.g.,
IR drop and simultaneous switching noise), and thermal coupling considerations (e.g., the minimum
spacing between chiplets).

Although the objectives of chip placement and chiplet placement may appear similar, they have
distinct problem contexts, rewards, and constraints. Chiplet placement must consider multiple con-
straints from various electrical requirements and specifications (SI/PI/TI), while chip placement pri-
marily focuses on the trade-off between the wirelength and congestion [7]. The comparison between
chip placement and chiplet placement problems is summarized in Table 1.

In this paper, we formulate the chiplet placement and routing problem as a novel constrained com-
binatorial problem, where chip placement is a prior action, and the routing of each netlist becomes
the following action. We hypothesize that routing is significantly influenced by the initial place-
ment actions. Therefore, we approach placement and routing as a unified problem and aim to train
a policy that strategically places chiplets with consideration of subsequent routing actions. We pro-

5

DesignCon 2025

Chip (Standard Cell, Macro) Placement
Problem Chiplet Placement Problem

Number of
Components ∼ 106 10∼1000

Component Overlap
Constraint × ✓

Routing Overlap
Constraint × ✓

Maximum Wirelength
Constraint × ✓

Reward Type Wirelength, congestion SI/PI/TI

Table 1: Comparison between Chip and Chiplet Placement Problems

pose a novel representation and benchmark for the problem and implement a reinforcement learning
approach using open-source libraries to train auto-regressive policies.

The main contributions of this paper are as follows:

• We define a novel chiplet placement and routing optimization problem.
• We implement the chiplet placement and routing optimization problem as a benchmark.
• We utilize state-of-the-art open-source libraries [11, 10] to make the problem accessible to

the broader research community so that it may bootstrap further future works.

2 CHIPLET PLACEMENT AND ROUTING PROBLEM STATEMENT

Chiplet Placement and Routing Problem Definition:

• Optimally place chiplets on an interposer and route interconnections between them.
• Objective: Minimize the total datarate-weighted route length while satisfying hard con-

straints.
• Chiplet characteristics:

– Unique size and port locations.
– Interconnections defined by netlists, specifying connections between ports of two

chiplets.
• Interdependence of placement and routing:

– Routing solution heavily relies on the initial placement of chiplets.
– Order of routing significantly impacts final solution quality.

• Hard constraints:
– Chiplets must not overlap.
– Routings cannot intersect.
– High failure rate in finding feasible solutions due to hard constraints.

• Combinatorial nature of the problem:

6

DesignCon 2025

– Feasibility and final cost depend on the order of placement and routing.
– Search space expands exponentially with the number of chiplets and netlists.

• Importance of the problem:
– Directly influences system performance, power consumption, and overall cost.
– Challenging to find feasible and optimal solutions due to hard constraints and combi-

natorial nature.
– Requires advanced optimization techniques and algorithms to tackle the complexity.

2.1 GENERAL MDP FORMULATION

We formulate the process of generating solutions for a problem as a Markov Decision Process
(MDP). Given a problem instance x, the MDP is defined by the following components:

• State Space S: A set of states that encapsulate the information about the given chiplets and
netlists x and the partial solution at each step of the solution-generating process.

• Action Space A: A set of actions at available at each step t, which can modify the current
partial solution to progress towards a complete solution.

• Transition Function T : A deterministic function st+1 = T (st, at) that maps a state-action
pair (st, at) to the next state st+1, defining how the partial solution evolves based on the
chosen action.

• Reward Function R: A function R(st, at) that assigns an immediate scalar reward to
each state-action pair (st, at), providing feedback to the agent about the desirability of the
chosen action in the current state.

• Discount Factor γ: A parameter γ ∈ [0, 1] that balances the importance of immediate and
future rewards, allowing the agent to consider the long-term consequences of its actions.

The solution to a chiplet placement and routing problem x is represented as a sequence of actions
a = (a1, . . . , aT) taken over T steps, thanks to the deterministic nature of the transition function.
The objective is to find a sequence of actions that minimizes the total cost of the problem, which is
equivalent to maximizing the cumulative discounted reward

∑T
t=1 γ

tR(st, at) in the MDP formu-
lation.

2.2 MDP FOR CHIPLET PLACEMENT AND ROUTING PROBLEM

Figure 5: Hierarchical MDP for chiplet placement and routing problem

As we formulate the chiplet placement and routing problem as a unified problem, we define the MDP
as a hierarchical MDP that consists of a higher-level placement action set and lower-level routing
action set as described in Fig. 5. Given a fixed-sized interposer canvas (hint, wint), a set of chiplets
(C) to be placed and a set of interconnection netlist (I), there follows two different types of actions.

7

DesignCon 2025

Figure 6: Initial state of the hierarchical MDP of chiplet placement and routing problem

In Fig. 6, the initial state (S0) consists of interposer canvas size, chiplets (C), and interconnection
netlists (I), each of which consists of multiple components. Interposer canvas is simply defined by
its width and height. Chiplets (C) is composed of chiplets, each of which is defined by the size,
and transmitter and receiver port locations. Netlists (I) is a set of interconnections, each of which is
defined by the transmitter chiplet, receiver chiplet, and the datarate.

Figure 7: Graphical representation of higher-level chiplet placement action (A0) as a set of sequential
sub-actions

In Fig. 7, the higher-level chiplet placement action (A0) is composed of the sequential placement
of chiplets as A0 = {ac1 , ac2 , ac3 , ..., acn}. Chiplets are auto-regressively placed on the interposer
canvas as sub-actions, which are represented as the x,y-coordinates of the location of each chiplet
with a specific rotational transformation. Subaction is defined as follows: act= (rotation, location)
= (r, (xt, yt)), where r ∈ {S,W,N,E}.

According to the higher-level chiplet placement action (A0), chiplet state is represented as a 3D-
array as represented in Fig. 8. Each layer of interposer-sized array represents chiplet locations, tx
locations and rx locations of each netlist, respectively. This state representation gives both chiplet
placement context and routing context, whose embeddings can improve the generalization of the
agent during the training.

8

DesignCon 2025

Figure 8: 3D-array representation of state in chiplet placement environment

Figure 9: Graphical representation of lower-level routing action (A1) as a set of sequential routing
of each netlist

Followed by the higher-level placement action (A0), as shown in Fig. 9, lower-level routing action
consists of multiple routes according to the netlist (I), as A1 = {aia , aib , aic , ..., aim}. A routing of
the interconnection between two chiplets is referred to as a sub-action, which is the sequence of co-
ordinates in the route between the two tx and rx nodes, ai = {(x0, y0), (x1, y1), (x2, y2), ...(xl, yl)},
where the first and the last coordinate are the tx and rx nodes for the two chiplets to be routed, and l
is the tour length of the route. The datarate of each interconnection are independently determined.

In summary, the hierarchical MDP of the chiplet placement and routing is defined as follows:

• Initial State: S0 = {(hint, wint), C, I}, where C is a set of chiplets and I is a set of netlists.
• Placement State: S1 ={(hint, wint), C, I, A0}
• Routing State: S2 = {(hint, wint), C, I, A0, A1}
• Higher-level Action: A0 = {ac1 , ac2 , ac3 , ..., acn}, where each chiplet placement sub-

action is defined as act= (rotation, location) = (r, (xt, yt)), where r ∈ {S,W,N,E}.
• Lower-level Action:A1 = {aia , aib , aic , ..., aim}, where each netlist routing sub-action is

defined as ai = {(x0, y0), (x1, y1), (x2, y2), ...(xl, yl)}.
• Reward: R =

∑m
i=1 λ · |aim |, where λ is a datarate-dependent hyperparameter.

2.3 PROBLEM COMPLEXITY

The chiplet placement and routing problem presents a significant challenge due to its combinatorial
nature, which results in a vast solution space, and its high problem complexity arising from the in-
terdependent and hard-constrained characteristics of the task. As illustrated in Table 1, although the
chip placement problem [8] involves a considerably larger number of components compared to the
chiplet placement problem, the latter exhibits distinct complexity dimensions. This is attributed to

9

DesignCon 2025

the presence of various hard constraints and the requirement for simulation-based reward evaluation,
setting the chiplet placement problem apart from its chip placement counterpart.

To illustrate the complexity of the chiplet placement and routing problem, we implemented the
hierarchical Markov Decision Process (MDP) described in Section 2.2. This implementation was
based on random solution generation, and we evaluated the success rate of obtaining a feasible
solution as well as the failure rates of placement and routing separately. In this context, failure
refers to the inability to satisfy the hard constraints imposed by the problem. By analyzing these
metrics, we aim to demonstrate the inherent difficulty in finding even a single feasible solution for
this problem, highlighting the significant challenges associated with chiplet placement and routing
optimization.

Figure 10: Single iteration/episode procedure of random solution generation for chiplet palcement
and routing MDP

We formulated a problem with 6 chiplets and 5 netlists and the procedure for generating a random
solution for an iteration/episode is shown in Fig. 10.

Iterations (N) Wirelength (R) Completion Rate Placement Fail Routing Fail
100 52 19.00% 50.60% 49.40%
300 51 13.00% 55.60% 44.40%
500 47 13.80% 56.80% 43.20%

1,000 41 13.40% 52.10% 47.90%
2,000 43 13.30% 51.70% 48.30%

10,000 39 13.29% 53.10% 46.90%
100,000 37 12.88% 52.80% 47.20%

Table 2: Iteration results for wirelength, completion rate, placement fail, and routing fail.

Table 2 presents the results of our evaluation of the random solution generation to the hierarchical
MDP implementation for the chiplet placement and routing problem. We conducted experiments
with varying numbers of iterations, ranging from 100 to 100,000, to assess the performance of
the random solution generation approach. The table reports several key metrics, including the total
wirelength, completion rate, placement fail rate, and routing fail rate.

The total wirelength represents the sum of the lengths of all the interconnections between the
chiplets, serving as a measure of the overall solution cost. As the number of iterations increases,
the total wirelength tends to decrease.

The completion rate refers to the percentage of iterations that successfully yield a feasible solution,
successful placement of all chiplet and routing of all netlist satisfying all the hard constraints. No-
tably, the completion rate remains relatively low, ranging from 12.88% to 19.00%, highlighting the
difficulty in finding feasible solutions for the chiplet placement and routing problem.

10

DesignCon 2025

The placement fail rate and routing fail rate provide insights into the specific stages where failures
occur. The placement fail rate represents the percentage of iterations where the placement of chiplets
violates the hard constraints, while the routing fail rate indicates the percentage of iterations where
the routing of interconnections fails to meet the constraints. Interestingly, the placement fail rate is
consistently higher than the routing fail rate, suggesting that the placement stage is more prone to
constraint violations in this problem.

Moreover, as the number of iterations increases, the placement fail rate and routing fail rate remain
relatively stable, indicating that simply increasing the number of random solution attempts does not
significantly improve the chances of finding feasible solutions. This observation underscores the
need for more sophisticated optimization techniques, such as reinforcement learning, to effectively
tackle the complexity of the chiplet placement and routing problem.

Overall, the results presented in Table 2 demonstrate the challenging nature of the chiplet placement
and routing problem, with low completion rates and high failure rates even with a large number of
iterations. These findings motivate the development of advanced optimization approaches to effi-
ciently explore the vast solution space and find high-quality, constraint-satisfying solutions.

3 REINFORCEMENT LEARNING FOR CHIPLET PLACEMENT

3.1 AUTOREGRESSIVE POLICIES

In the reinforcement learning framework, a policy πθ is employed to construct a solution from
scratch for a given problem instance x. The policy is parameterized by a set of learnable parameters
θ, which are optimized during the training process. We consider the problem of generating a solution
as an autoregressive sequence generation task.

The policy πθ consists of two main components: an encoder fθ and a decoder gθ. The encoder fθ
is a function that maps the problem instance x into a latent embedding space, generating a context
vector h = fθ(x). The decoder gθ is a function that iteratively determines a sequence of actions
a = (a1, . . . , aT) based on the context vector h and the previous actions. Formally, the policy can
be defined as:

at ∼ gθ(at|at−1, . . . , a0, st,h), πθ(a|x) ≜
T∏

t=1

gθ(at|at−1, . . . , a0, st,h), (1)

where st represents the state at step t, and h is the context vector obtained from the encoder. Note
that we abuse the notation slightly by using θ to represent the parameters of the policy π, the encoder
f , and the decoder g.

The policy generates actions sequentially, conditioning each action on the previous actions and the
current state. This allows the policy to capture dependencies between actions and adapt to the evolv-
ing solution. The probability of a complete action sequence a given the problem instance x is ex-
pressed as the product of the individual action probabilities.

By treating the solution generation process as an autoregressive sequence generation task, the policy
can learn to generate actions that incrementally build a complete solution. The encoder fθ extracts
relevant features from the problem instance, while the decoder gθ uses this information along with
the previously generated actions to make informed decisions about the next action to take.

3.2 DEEP REINFORCEMENT LEARNING

The primary objective in reinforcement learning is to train a policy πθ that maximizes the expected
cumulative reward (or, equivalently, minimizes the total cost) over the distribution of problem in-
stances. This is achieved by optimizing the parameters θ of the policy using deep reinforcement
learning techniques.

The optimization problem can be formulated as follows:

θ∗ = argmax
θ

Ex∼P (x)

[
Eπθ(a|x)

[
T−1∑
t=0

γtR(st, at)

]]
, (2)

11

DesignCon 2025

where θ∗ represents the optimal parameters that maximize the expected cumulative reward, P (x) is
the distribution of problem instances, and γ ∈ [0, 1] is the discount factor that balances the impor-
tance of immediate and future rewards.

The inner expectation Eπθ(a|x)[·] represents the expected cumulative reward obtained by follow-
ing the policy πθ to generate a sequence of actions a for a given problem instance x. The outer
expectation Ex∼P (x)[·] averages the expected cumulative reward over the distribution of problem
instances.

To optimize the policy parameters θ, various deep reinforcement learning algorithms can be em-
ployed, such as policy gradient methods (e.g., REINFORCE [3], Actor-Critic [2], PPO [6]) or
value-based methods (e.g., Q-learning, Deep Q-Networks [5]). These algorithms utilize deep neural
networks to parameterize the policy πθ and learn the optimal parameters through iterative updates
based on the observed rewards and state transitions.

During training, the policy generates sequences of actions for a batch of problem instances sampled
from the distribution P (x). The resulting states, actions, and rewards are used to estimate the gra-
dients of the expected cumulative reward with respect to the policy parameters θ. The gradients are
then used to update the parameters using optimization techniques such as stochastic gradient descent
(SGD) or its variants such as Adam [4].

By iteratively generating solutions, collecting rewards, and updating the policy parameters, the train-
ing process allows the policy to learn the underlying patterns and strategies for constructing high-
quality solutions across the distribution of problem instances. The trained policy can then be used to
generate solutions for new, unseen problem instances efficiently.

The choice of the specific deep reinforcement learning algorithm and the architecture of the neu-
ral networks used to parameterize the policy depends on the characteristics of the problem domain
and the available computational resources. The training process aims to find the optimal policy pa-
rameters θ∗ that maximize the expected cumulative reward, enabling the generation of high-quality
solutions for the given problem domain.

3.3 OPEN-SOURCE LIBRARIES

To facilitate the development and benchmarking of deep reinforcement learning approaches for com-
binatorial optimization, we leverage and contribute to open-source libraries. Our primary goal is to
provide a comprehensive and user-friendly framework that enables researchers and practitioners to
easily implement, compare, and extend various algorithms in this domain. We adopt the RL4CO
library [10] as the main template for our benchmark codebase. RL4CO is a unified interface for
defining and solving combinatorial optimization problems using reinforcement learning techniques,
such as EDA [9]. It offers a modular and extensible architecture, allowing seamless integration of
different problem domains, policy architectures, and training algorithms. Our codebase is also de-
signed to be compatible with TorchRL [11], a popular deep reinforcement learning codebase built
on top of PyTorch. TorchRL provides a collection of state-of-the-art reinforcement learning algo-
rithms, including policy gradient methods and value-based methods. By integrating with TorchRL,
our codebase can leverage its efficient implementations and benefit from ongoing updates and im-
provements. By providing an open-source implementation that integrates with existing frameworks
and supports standardized evaluation, we aim to accelerate research and development in the context
of fat and effective chiplet placement and routing. We believe our codebase library will serve as a
valuable resource for the community, promoting collaboration, reproducibility, and the advancement
of state-of-the-art techniques in this exciting area.

4 FURTHER WORKS FOR THE MAIN DESIGNCON PAPER

• Reward estimator based on eye diagram and simultaneous switching noise will be imple-
mented.

• Extensive experimental results with various reinforcement learning schemes and neural
networks, as well as heuristics solvers, will be reported.

• Chiplet placement and routing problem benchmark will be released in GitHub.

12

DesignCon 2025

REFERENCES

[1] G.E. Moore. “Cramming More Components Onto Integrated Circuits”. In: Proceedings of the
IEEE 86.1 (1998), pp. 82–85. DOI: 10.1109/JPROC.1998.658762.

[2] Vijay Konda and John Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural informa-
tion processing systems 12 (1999).

[3] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy gradient
methods for reinforcement learning with function approximation”. In: Advances in neural
information processing systems 12 (1999).

[4] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
“Human-level control through deep reinforcement learning”. In: nature 518.7540 (2015),
pp. 529–533.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal
policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347 (2017).

[7] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek Khailany,
and David Z. Pan. “DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 40.4 (2021), pp. 748–761. DOI: 10.1109/TCAD.2020.3003843.

[8] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya
Srinivasa, William Hang, Emre Tuncer, Quoc Le, James Laudon, Richard Ho, Roger Carpen-
ter, and Jeff Dean. “A graph placement methodology for fast chip design”. In: Nature 594
(June 2021), pp. 207–212. DOI: 10.1038/s41586-021-03544-w.

[9] Haeyeon Kim, Minsu Kim, Federico Berto, Joungho Kim, and Jinkyoo Park. “DevFormer:
A Symmetric Transformer for Context-Aware Device Placement”. In: 2023. arXiv: 2205.
13225 [cs.LG].

[11] Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng
Yang, Gianni De Fabritiis, and Vincent Moens. “TorchRL: A data-driven decision-making
library for PyTorch”. In: International conference on learning representations. 2024. arXiv:
2306.00577 [cs.LG].

[10] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu,
Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung,
Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide
Angioni, Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn,
Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park. “RL4CO: an Extensive Rein-
forcement Learning for Combinatorial Optimization Benchmark”. In: Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2025. URL: https:
//rl4.co/.

13

https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/TCAD.2020.3003843
https://doi.org/10.1038/s41586-021-03544-w
https://arxiv.org/abs/2205.13225
https://arxiv.org/abs/2205.13225
https://arxiv.org/abs/2306.00577
https://rl4.co/
https://rl4.co/

	Introduction
	Chiplet Placement and Routing Problem Statement
	General MDP Formulation
	MDP for Chiplet Placement and Routing Problem
	Problem Complexity

	Reinforcement Learning for Chiplet Placement
	Autoregressive Policies
	Deep Reinforcement Learning
	Open-Source Libraries

	Further Works for the Main DesignCon Paper

